
Copyright ã1993 by Novell, Inc. and NeXT Computer, Inc.    All Rights Reserved.

Transaction Tracking System APIs
Introduction to Transaction Tracking

NetWare file servers that include the Transaction Tracking System (TTS) can track transactions and ensure file
integrity by backing out (or erasing) interrupted or partially completed transactions.    TTS only affects transactional
files.    A file becomes transactional when the file's Transactional extended file attribute is set.

For example, a banking database application frequently performs a transaction that includes the following three
writes to database files:   

· A debit to one account
· A credit to another account
· A note to a log   

The application must complete all three of these writes to maintain database integrity.    Transaction tracking is
implemented in two ways, implicit and explicit.   

· Implicit transaction tracking requires no coding on the part of an application developer.    If TTS is
installed and enabled on a file server, TTS tracks all transactions to all transactional files (including
transactions made by NetWare to bindery files).

· Explicit transaction tracking has two calls: NWTTSBeginTransaction and NWTTSEndTransaction.   
Explicit Transaction Tracking requires applications to make TTS calls and allows applications to neatly
bracket file update sequences with locking and TTS calls.    An application would most likely use logical or
physical record locks with TTS calls (see "Synchronization Servicesº).

The following steps describe how TTS tracks each write within a transaction.

1) An application writes new data to a file on a file server.   

2) The file server stores the new data in cache memory.    The target file on the file server hard disk remains
unchanged.

3) The file server scans the target file on the file server hard disk, finds the data to be changed (old data), and
copies the old data to cache memory. The file server also records the name and directory path of the target
file and the location and length of the old data (record) within the file.    The target file on the file server hard
disk still remains unchanged.

4) The file server writes the old data in cache memory to a transaction work file on the file server hard disk.   
The transaction work file resides at the root level of volume SYS on the file server.    The file is flagged
System and Hidden.    The target file on the file server hard disk still remains unchanged.

5) The file server writes the new data in cache memory to the target file on the file server hard disk.    The target
file is now changed.

The file server repeats these steps for each write within a transaction.    The transaction work file grows to
accommodate the old data for each write.    If the transaction is interrupted, the file server writes the contents of the
transaction work file to the target file, thereby restoring the file to its pretransaction condition.    In effect, the file
server backs out the transaction.   

A file server can monitor from 100 to 10,000 transactions at a time.    (The maximum value can be configured with
SET for NetWare v3.x.)    A file server can track only one transaction at a time for each session.    If a session sends
several transactions to a file server rapidly, the file server queues the transactions and services them one at a time.

NWTTSAbortTransaction

This function aborts all transactions, explicit and implicit, on a file that has been flagged transactional.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;

ccode=NWTTSAbortTransaction(serverConnID);

Input
serverConnID passes the file server connection ID.

Output
None.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

Note: A return value in NWErrno of 0xFE indicates that more than the threshold number of logical or physical
records are still locked by the application.    However, the transaction is still finished and any locks being
held are released.    In this case, the file server automatically starts a new implicit transaction.   

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function releases the following record locks:

· Physical record locks generated by the file server when an application tried to write an unlocked
record.

· Physical or logical locks that have not been released because of a file write.

When this function is complete, all transactions will have been successfully backed out.

Notes
If a transaction is aborted, all writes made since the beginning of a transaction are cancelled, and all files are
returned to the state they were in before the transaction began.

Files can be flagged transactional with NWCreateFile and NWSetFileAttributes.

See Also
NWCreateFile
NWSetFileAttributes
NWTTSBeginTransaction
NWTTSEndTransaction

NWTTSBeginTransaction

This function begins an explicit transaction on a file that has been flagged transactional.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;

ccode=NWTTSBeginTransaction(serverConnID);

Input
serverConnID passes the file server connection ID.

Output
None.

Return Values
 0 Successful.
-1 Unsuccessful.      One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function tracks all transactional files that are currently open and all those that are opened during the
transaction.

When data is written to a transactional file during a transaction, the file server automatically generates a physical
record lock for the region being written.    If a lock already exists, no additional lock is generated.    This automatic
locking can be disabled using the NWTTSSetControlFlags function.   

Notes
Any closing and unlocking of transactional files is delayed until an
NWTTSEndTransaction or NWTTSAbortTransaction is executed.    Logical and physical records are not unlocked
until the end of the transaction if file writes are performed while the lock is in force. Use NWCreateFile or
NWSetFileAttributes to flag a file transactional.

See Also
NWCreateFile
NWSetFileAttributes
NWTTSAbortTransaction
NWTTSSetControlFlags
NWTTSEndTransaction

NWTTSDisableTransactionTracking

This function disables transaction tracking services on the specified file server.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;

ccode=NWTTSDisableTransactionTracking(serverConnID);

Input
serverConnID passes the file server connection ID.

Output
None.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno.

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active
0xC6 No Console Privileges

Note: A return value in NWErrno of 0xFE indicates that more than the threshold number of logical or physical
records are still locked by the application.    However, the transaction is still finished and any locks being
held are released.    In this case, the file server automatically starts a new implicit transaction.   

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function call should be used after transaction services are no longer being used.

The client making this call must be supervisor or have equivalent rights.

See Also
NWTTSEnableTransactionTracking
NWTTSBeginTransaction
NWTTSIsTransactionWritten

NWTTSEnableTransactionTracking

This function enables transaction tracking services on the specified file server.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;

ccode=NWTTSEnableTransactionTracking(serverConnID);

Input
serverConnID passes the file server connection ID.

Output
None.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno.

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active
0xC6 No Console Privileges

Note: A return value in NWErrno of 0xFE indicates that more than the threshold number of logical or physical
records are still locked by the application.    However, the transaction is still finished and any locks being
held are released.    In this case, the file server automatically starts a new implicit transaction.   

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function call will enable TTS if the server has it available.    However, the version of NetWare that the file
server is running determines the information the call returns.

For NetWare v3.x, this call enables TTS.    Use NWTTSIsAvailable to check whether TTS has been disabled.

For NetWare v2.x, this call enables TTS if TTS has been installed on the file server.    If TTS has not been installed,
the call will not fail.    On file servers running NetWare v2.x, you should always use NWTTSIsAvailable before
making this call.

Notes
The application making this call must be supervisor or have equivalent rights.

See Also
NWTTSDisableTransactionTracking
NWTTSBeginTransaction
NWTTSIsAvailable
NWTTSIsTransactionWritten

NWTTSEndTransaction

This function ends an explicit transaction on a file that has been flagged transactional.    The function also returns a
transaction reference number.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint32 transactionReferenceNumber;

ccode=NWTTSEndTransaction(serverConnID,
&transactionReferenceNumber);

Input
serverConnID passes the file server connection ID.

transactionReferenceNumber passes a pointer to the space allocated for the transaction reference number for the
transaction being ended.

Output
transactionReferenceNumber receives the transaction reference number for the transaction being ended.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno.

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

Note: A return value in NWErrno of 0xFE indicates that more than the threshold number of logical or physical
records are still locked by the application.    However, the transaction is still finished and any locks being
held are released.    In this case, the file server automatically starts a new implicit transaction.   

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
The transaction is not necessarily written to disk when the reference number is returned; a client must use the
NWTTSIsTransactionWritten function to verify that a transaction has been written to disk.    If the file server fails
before all updates contained within the transaction have been written to disk, the transaction will be backed out
when the file server is rebooted.

If transaction tracking is disabled, the reference number can still be used to determine when the transaction has
been completely written to disk.   

Notes
This function releases all physical record locks generated by the file server when a write is made to an unlocked
record.    In addition, physical or logical locks that have not been released because of a file write are unlocked at
this time.   

Files can be flagged transactional with NWCreateFile and with
NWSetFileAttributes.

See Also
NWCreateFile
NWSetFileAttributes
NWTTSAbortTransaction
NWTTSBeginTransaction
NWTTSIsTransactionWritten

NWTTSGetConnectionThresholds

This function returns the number of logical and physical record locks allowed for implicit transactions.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint8 logicalRecordLockThreshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSGetConnectionThresholds(serverConnID,
&logicalRecordLockThreshold, &physicalRecordLockThreshold);

Input
serverConnID passes the file server connection ID.

logicalRecordLockThreshold passes a pointer to the space allocated for the number of logical record locks allowed
before implicit transactions begin (0 to 255).

physicalRecordLockThreshold passes a pointer to the space allocated for the number of physical record locks
allowed before implicit transactions begin (0 to 255).

Output

logicalRecordLockThreshold receives the number of logical record locks allowed before implicit transactions begin
(0 to 255).

physicalRecordLockThreshold receives the number of physical record locks allowed before implicit transactions
begin (0 to 255).

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function allows an application to get the number of logical and physical record locks allowed before implicit
transactions begin.

The NWTTSSetConnectionThresholds function and this function are useful for applications that change the
implicit application thresholds and later want to restore them.    For example, NWTTSGetConnectionThresholds
can get the number of logical and physical locks, and NWTTSSetConnectionThresholds can do one of the
following:

· Turn off implicit transactions. (Applications that use only explicit transactions, but sometimes generate
unnecessary implicit transactions, need to turn off all implicit transactions.)

· Set implicit thresholds for applications that always keep one or more records locked.

Notes
The default threshold for logical and physical locks is 0.    A threshold of 255 means implicit transactions for that
lock type have been completed.

See Also
NWTTSSetConnectionThresholds

NWTTSGetControlFlags

This function returns the control flags byte for files flagged as transactional.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint8 TTSControlFlags;

ccode=NWTTSGetControlFlags(serverConnID, &TTSControlFlags);

Input
serverConnID passes the file server connection ID.

TTSControlFlags passes a pointer to the space allocated for the Transaction Tracking Control flags.    (See
ªDescriptionº below.)

Output

TTSControlFlags receives a Transaction Tracking Control flag.    (See "Description" below.)

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
Transaction tracking control flags are only valid for files flagged as TTS (transactional).    These control flags are
defined as follows:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

See Also
NWTTSSetControlFlags

NWTTSGetProcessThresholds

This function returns the number of explicit physical and logical record locks that can be done before implicit
locking begins.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint8 logicalRecordLockThreshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSGetProcessThresholds(serverConnID,
&logicalRecordLockThreshold, &physicalRecordLockThreshold);

Input
serverConnID passes the file server connection ID.

logicalRecordLockThreshold passes a pointer to space allocated for the number of explicit logical record locks
allowed before implicit transactions begin.

physicalRecordLockThreshold passes a pointer to the space allocated for the number of explicit physical record
locks allowed before implicit transactions begin.

Output

logicalRecordLockThreshold receives the number of explicit logical record locks allowed before implicit
transactions begin.

physicalRecordLockThreshold receives the number of explicit physical record locks allowed before implicit
transactions begin.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function and the NWTTSSetProcessThresholds function are useful for applications that change the implicit
process thresholds and later want to restore them.    For example, NWTTSGetProcessThresholds can query an
application for the number of logical and physical record locks allowed before an implicit transaction begins.   
NWTTSSetProcessThresholds can then do one of the following:

· Turn off implicit transactions
· Set implicit thresholds for applications that always keep one or more records locked

The default threshold for logical and physical locks is 0.    A threshold of 255 means there will be no implicit
transactions allowed for that lock type.   

The thresholds returned by this function are valid for the requesting application only.    When the application
terminates, the connection thresholds are restored.

Notes
Applications that intend to use only explicit transactions, but sometimes generate unnecessary implicit transactions,
need to turn off all implicit transactions.

See Also

NWTTSSetProcessThresholds

NWTTSIsAvailable

This function verifies that the file server supports transaction tracking.

Synopsis
#include "nwapi.h"

NWBoolean_ts ccode;
uint16 serverConnID;

ccode=NWTTSIsAvailable(serverConnID);

Input
serverConnID passes the file server connection ID.

Output
None.

Return Values
1 Transaction Tracking is available.    (See ªDescriptionº below.)
0 Transaction Tracking is not available.    (See ªDescriptionº below.)    If another problem exists, one of the

following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
The version of NetWare that the file server is running determines the information that this call returns.

For NetWare v2.x, this call allows the application to know whether the server has TTS installed.   

1 Indicates that TTS is installed.
0 Indicates that TTS is not installed.   

However, the API does not indicate whether TTS is currently enabled.    To ensure that TTS is enabled,
NWTTSEnableTransactionTracking should be called

For NetWare v3.x, this call indicates whether TTS is enabled.

1 Indicates that TTS is enabled.
0 Indicates that TTS has been disabled.

See Also
NWTTSEnableTransactionTracking
NWTTSDisableTransactionTracking

NWTTSIsTransactionWritten

This function verifies whether a transaction has been written to disk.

Synopsis
#include "nwapi.h"

NWBoolean_ts ccode;
uint16 serverConnID;
uint32 transactionReferenceNumber;

ccode=NWTTSIsTransactionWritten(serverConnID,
transactionReferenceNumber);

Input
serverConnID passes the file server connection ID.

transactionReferenceNumber passes the Transaction Reference number, obtained from the NWTTSEndTransaction
function.

Output
None.

Return Values
1 Transaction written to disk
0 Transaction not written to disk, and an error code is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
Before using NWTTSIsTransactionWritten, use NWTTSEndTransaction to obtain a valid
transactionReferenceNumber.    If NWTTSEndTransaction fails, do not use NWTTSIsTransactionWritten.    When
NWTTSEndTransaction fails, it returns an invalid transactionReferenceNumber.    When
NWTTSIsTransactionWritten is passed an invalid transactionReferenceNumber, it returns an invalid response.

Applications should not wait for transactions to be written to disk unless it is absolutely necessary.    Because of the
file server caching algorithms, it may be 3 to 5 seconds (or longer) before they are actually written.

Notes
Transactions are written to disk in the order in which they terminate.

See Also

NWTTSEndTransaction

NWTTSSetConnectionThresholds

This function informs NetWare of how many explicit physical and logical record locks to permit before invoking
implicit transactions.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint8 logicalRecordLockThreshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSSetConnectionThresholds(serverConnID,
logicalRecordLockThreshold, physicalRecordLockThreshold);

Input
serverConnID passes the file server connection ID.

logicalRecordLockThreshold passes the number of logical record locks to allow before implicit transactions begin.

physicalRecordLockThreshold passes the number of physical record locks to allow before implicit transactions
begin.

Output
None.

Return Values
 0 Successful.
-1 Unsuccessful.    One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors and a description of the four bytes in NWErrno.

Description
This function and NWTTSGetConnectionThresholds are useful for applications that change the implicit application
thresholds and later want to restore them.    For example, NWTTSGetConnectionThresholds can obtain the current
number of logical and physical locks and then NWTTSSetConnectionThresholds can do one of the following:

· Turn off implicit transactions.    (Applications that use only explicit transactions, but sometimes
generate unnecessary implicit transactions, need to turn off all implicit transactions.)

· Set implicit thresholds for applications that always keep one or more records locked.

Notes
The default threshold for logical and physical locks is 0.    A threshold of 255 means no implicit transactions for that

lock type will be performed.

See Also
NWTTSGetConnectionThresholds

NWTTSSetControlFlags

This function enables or disables automatic record locking on writes to transactional files.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;
uint8 TTSControlFlags;

ccode=NWTTSSetControlFlags(serverConnID, TTSControlFlags);

Input
serverConnID passes the file server connection ID.

TTSControlFlags passes the Transaction Tracking Control flags.    (See "Description" below.)

Output
None.

Return Values
0 Successful
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors.

Description
Transaction tracking control flags are only valid for files flagged as TTS (transactional). These flags are defined as
follows:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

See Also
NWTTSGetControlFlags

NWTTSSetProcessThresholds

This function sets the number of logical and physical locks to perform before implicit locking begins.

Synopsis

#include ªnwapi.hº

int ccode;
uint16 serverconnID;
uint8 logicalRecordLockThreshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSSetProcessThresholds (serverConnID,
logicalRecordLockThreshold, physicalRecordLockThreshold);

Input
serverConnID passes the file server connection ID.

logicalRecordLockThreshold passes the number of logical record locks to allow before implicit transactions begin.

physicalRecordLockThreshold passes the number of physical record locks to allow before implicit transactions
begin.

Output
None.

Return Values
0 Successful
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFE Transaction Restart
0xFD Transaction Tracking Disabled
0xFF Lock Error
0xFF No Explicit Transaction Active

See Appendix B for a complete listing of possible NetWare errors.

Description
The thresholds set by this function are valid for the requesting application only. When the application terminates,
the default workstation thresholds are restored.

This function is useful in either turning off implicit transactions or allowing applications that always keep one or
more records locked to work. Applications that intend to use only explicit transactions, but sometimes generate
unnecessary implicit transactions, can use this function to turn off all implicit transactions.

Notes
The default threshold for logical and physical locks is 0 unless this number has been changed using the
NWTTSSetConnectionThresholds function. A threshold of 255 means no implicit transactions for that lock type are
performed.

See Also
NWTTSGetProcessThresholds

